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Abstract 

In judging the effectiveness of methods of solving crystal 
structures, it is customary to use the mean phase error or 
the map correlation coefficient as a measure of success. 
When methods for ab initio phase determination are 
being developed, it is necessary to take into account that 
the solutions found may correspond to different origin 
and enantiomorph choices, so a procedure of map 
alignment must be performed prior to calculation of a 
phase-similarity measure. A fast-Fourier-transform-based 
algorithm for map alignment is proposed for different 
space groups. The possibility of additional alignment by 
map 'overturning' is discussed for very low resolution 
protein syntheses. Simple analytical equations defining 
the permitted origin shift are included. 

1. Introduction 

To judge how close together two phase sets are, the mean 
phase difference is usually calculated. To emphasize the 
role of strong reflections, the weighted-by-modulus 
values of the mean phase difference or map correlation 
coefficient 

C = f p,(r)pz(r)dV ,. p~(r)dVr f pe(r)dVr 
V V 

(1) 
are commonly used measures (Lunin & Woolfson, 
1993). The map correlation coefficient (1) may be 
equally expressed in terms of structure-factor values as 

C = ot E Fl(S)F2(s)exp{i[q92(s) - qg.(s)]} 
S 

= ot ~ F, (s)F2(s) cos[~Oz(S ) - qg,(s)], (2) 
S 

: 

Here and below, we suppose that all the maps and 
structure-factor sums are calculated without the F000 
term. 

When the phase problem is solved ab initio, e.g. by 
generating random phase sets, it is necessary to realize 
that the phase sets produced may correspond to different 
origin and enantiomorph choices, so preliminary align- 

ment of maps (or corresponding phase sets) must be 
carried out before the phase-difference measure is 
calculated (Lunin, Urzhumtsev & Skovoroda, 1990; 
Ha~ek & Schenk, 1992). As a criterion of best alignment, 
the map correlation coefficient (1) may be used. 

If the space-group symmetry permits only a finite 
number of different origin choices, all variants of the 
origin and enantiomorph choice may be easily checked in 
order to find the best one (Lunin, 1993; Weeks, De Titta, 
Hauptman, Thuman & Miller, 1994). When arbitrary 
shifts along one or three (P1) axes are allowed, the 
search for the best alignment is more complicated and it 
forces one sometimes (Weeks et al., 1994) to look for 
other, less direct, measures of phase similarity. Never- 
theless, as is shown below [and similarly in the problem 
of a translation search in the molecular replacement 
method (Crowther & Blow, 1967; Navaza & Vernoslova, 
1995)], the map correlation coefficient considered as a 
function of the origin-shift value has a Fourier-series 
structure. The fast Fourier transform (Ten Eyck, 1973) 
may be applied in such cases to calculate a set of 
correlation values for origin shifts sampled to a fine 
discrete grid in real space and the best one chosen. When 
necessary, the values found may be refined by local 
minimization but in practice a fine enough grid seems to 
provide sufficient accuracy. 

2. Map alignment 

2.1. Group P1 

Let us suppose that a map Pl (r) is fixed and we have 
to fit another map p2(r) to the first one using the map 
correlation coefficient (2) as the measure of success. As 
the basic possible transformations, we consider: 

(i) origin shifts 

p[(r) = Pe ( r+  u); (4) 

(ii) enantiomorph alternation 

p[(r) = p2(-r) .  (5) 

Equivalent transformations of the phases have the forms 

~o[(s) -- ~o2(s ) - 2zr(s, u); (6) 

~(s) = -~02(s). (7) 
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The map correlation coefficient for the fixed first and the 
shifted second map is 

C(u) = ot ~ Fl(s)Fz(s)exp{i[~O'z(S ) - ~01(s)] } 
s 

= t~ ~ FI(s)Fz(s)exp{ i[~o2(s ) - ~01(s)] 
s 

x exp[-2n'i(s,  u)]}. (8) 

Formula (8) is a Fourier transform, calculated with 
coefficients 

H(s) exp[iap(s)] = Va(s)Fz(s)exp{ i[~02(s ) - ~ol(s)] }. 

(9) 

The fast-Fourier-transform algorithm (Ten Eyck, 1973) 
allows one to perform efficient calculation of the set of 
correlation values corresponding to possible shifts 
sampled on a grid in the unit cell. 

When origin shifts are combined with the enantio- 
morph change (in this case, the first transformation step 
is the enantiomorph change and the second one the origin 
shift), they lead to the set of correlation values calculated 
as Fourier series with the coefficients 

H(s) exp[i~p(s)] = F 1 (s)Fz(s) exp{i [-~02(s ) - ~o(s)] }. 

(10) 
The choice of the optimal grid point (and enantio- 

morph) from the two three-dimensional sets of correla- 
tion values is then straightforward. 

2.2. Non-tr iv ial  space groups  

When one is working with a non-trivial space group, 
not all origin shifts preserve map symmetry. Similarly, 
the enantiomorph change may not be permitted by space- 
group symmetry. In this case, only the shifts permitted by 
the space group must be considered when looking for the 
best alignment. As is shown below, there is no need to 
calculate three-dimensional Fourier transforms in this 
case. 

If space-group symmetry restricts possible origin shifts 
to a finite number, only these values must be tried. 

Another case is when the possible origin shifts are 
restricted to a finite number of variants in two 
dimensions and may be arbitrary in the third direction. 
For simplicity, let arbitrary shifts be permitted along z 
axes. Let U lurnIM = t Jm=l be a set of permitted origin shifts 
in the xy plane: u m = (x m, ym, 0). [For example, for P2, u 
contains four shifts (0,0,0), (0,½,0), (½,0,0), i i . (~,~,0), for P6, 
it consists of one element (0,0,0) only.] Any permitted 
shift in this case may be expressed as 

(u x, Uy, uz) --  (u~, Uy, O) + (0, O, Uz), (11) 

where (u m, y~y, 0) 6 U and u z ~ (0, 1). 
Formula (8) can be reduced in this case to 

Cm(uz) --  ot ~ nm( l )  exp[iTzm(/)] exp( -2rr i luz )  (12) 
1 

with 

Hm(l) exp[i~:m(l)] = ~ Fl(hkl)F2(hkl)  
h,k 

x exp{i[q92(hkl ) -- q91(hk/)] 

-27r i (hu  m + ku~m)}. (13) 

So, in this case, it is possible to perform a one- 
dimensional Fourier transform for every shift from the 
U set (and enantiomorph choice if permitted) and then 
look for the best correlation value among M (or 2M if the 
enantiomorph may be changed) one-dimensional sets. 

Similar formulas may be written if arbitrary origin 
shifts are possible along other than z axes. The only 
difference is in the indexes over which the summation in 
(13) is extended. 

3. The use of an asymmetric part of the structure- 
factor set 

It is customary to use an asymmetric part of a structure- 
factor set when working with non-trivial space groups. 
We reduce now the summation in (2), (3) and (13) to an 
asymmetric part of the structure-factor set. Let S be the 
full set of structure factors used to calculate pl(r)  and 
p2(r) maps, let F = {(G~, t~)}~= l be the corresponding 
space group and Sasym be an asymmetric part of the set S, 
i.e. 

(i) all reflections of S may be generated from Sasy m by 
space-group and Hermitian symmetry transformations; 

(ii) for every s ~ Sasy m, s is the only point of the orbit 
T n {d=G s}~=l that belongs to Sasy m. 

If we denote 

m(s) as the number of different reciprocal 
(14) 

space points in the orbit {+GrS}~l,  

then (3) may be reduced to 

{ u =  ~ rn(s)F1(s)2 ~--~ m(s)Fe(s) 2 (15) 
SESasym sESasym 

To reduce summation in (2) and (13) to Sasym, it is 
necessary to take into account how the space group 
restricts possible origin shifts and systematic absences. It 
is shown in Appendix A that for nonvanishing reflections 

exp[-2n'i(s,  G~u)] - exp[-2:r i(s ,  u)] (16) 

for all permitted shifts u and all v -  1 . . . . .  n. The 
general reciprocal-space symmetry formula 

F(Grs)  exp[i~0(Qrs)] = F(s) exp{ i[~o(s) - 2n'(s, t~)] } 

(17) 

gives in this case 
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F,(GTs)F2(GTs) 
x exp{i[%(GTs) - ~o, (GTs)] - 2rri(Grs, urn)} 

= F, (s)Fz(s) exp{ i[92(s) - 9, (s)l - 2rri(s, Q u  m) } 

= Fl (s)Vz(s) exp{ i [%(s) - ~0, (s)] - 2rri(s, u m) }, 

(18) 
{Q s}~=~ participate equally so all the points of the orbit r , 

in the sums. This means that instead of (2) we may write 

C = et ~ m(s)Vl(s)Fz(s)cos[%(s ) -  ~ol(s)], (19) 
s E Sasy m 

where m(s) is again the number of different points 
T n in the orbit {+G s}~=x. The sum (13) is calculated for 

particular l, so for I # 0 only half of the orbit {+Grs}~=l 
is present in the sum and we can write the sum for 
s -- (hkI) ~ Sasy m as 

Hm(1) exp[iVjm(l)] 

= ~ p(hkl)Fl(hkl)Fe(hkl) 
h , k  

s E Sasy m 

× exp{ i [%(hk l ) -  9~(hkI)]- 2Jri(hu m + kuy)}, 

(20) 

where p(hkl) is the number of different points in the orbit 
{-FGrs}~=l with fixed I value. For I = 0, it is equal to the 
multiplicity m(hkO) defmed in (14). In other cases, 
p(s) = m(s)/2. [It is worth noting that we use summation 
(13) for space groups allowing arbitrary origin shift along 
z axes only.] 

4. Overturned maps 

It has been mentioned previously (Subbiah, 1993; Lunin 
et al., 1995) that some very low resolution phasing 
methods tend sometimes to give as solution an 'over- 
turned' synthesis - p ( r )  instead of the true one. In other 
words, the solvent region may be found rather that the 
molecular region. Discussions of the reasons for this are 
beyond the scope of this paper and we concentrate here 
on how this additional 'degree of freedom' for permitted 
map transformation influences the map alignment. 

The possibility of changing synthesis sign (or, 
equivalently, increasing all phases by Jr) means that we 
must look for the largest max I C(t)l value instead of 
max C(t). As 

max I C ( t ) l -  max{max  C ( t ) , -  mtin C(t)}, 
t 

then we must look for both maximal and minimal 
correlation values and take as optimal the one possessing 
the largest amplitude. So the consideration of map 
overturning as an additional permitted transformation 
does not necessitate a new correlation-value calculation 
but only changes what we take as the best correlation 
value. 

This work was partially supported by ISF grant 
RMZ000 and RFFI grant 94-04-12844. The Fortran 
programs for optimal map alignment search may 
be obtained from the authors by e-mail to 
lunina@impb.serpukhov.su. 

APPENDIX A 
Permitted origin shifts 

Let a map p(r) have the symmetry group 
F -- {(G v, t~)}~l, i.e. p ( Q r  + t~) = p(r) for every r ,  

m v - - 1  . . . . .  n. Let F t={(E,t)}i,= l (t 0 = 0 , t  u#Olmodl 
for / ~ - - 2  . . . . .  m) be its translation subgroup. The 
subgroup F t consists of identical transformations only 
(m - 1) for primitive lattices. For two vectors u and v, 
we will write u - V[modr, if there exists such (E, t~,) ~ F t 
that u = v + t~lmod l" 

We say that u is a permitted origin choice if the map 
p'(r) = p(r + u) has the same space group F as p(r). 
Similarly, we say that F permits the enantiomorph 
choice if p'(r) = p ( - r )  has the same group of symme- 
tries F. The set of permitted origin choices is defmed by 
the following lemma. 

Lemma 1. The function p(r + u) has the same space 
group as p(r) if and only if 

( Q  - E)u = 01rood r, for every v = 1 . . . . .  n. (21) 

Proof. Let F be the space group for p(r) and u be such 
that u = G~u - t~, where (E, t , )  ~ F t. Then, 

p ' (Qr  + t~) = p(Gvr + t~ + u) 

= p[G~(r + u) + t~ - t,,] 

= p [ Q ( r  + u) + t J  

= p(r + u) = p'(r). 

So, p'(r) has all asymmetries from/-' .  
Otherwise, let p'(r) have some symmetry from F: 

p ' (Qr  + t~) = p'(r) for every r, i.e. p ( Q r  + tv - u) = 
p ( r - u ) .  Then, denoting r - u = v ,  we have 
p [Q(v  + u) + t~ - u] = p(v) or p[Qv~ + t~+ 
( G ~ -  E)u] = p(v) for every v. This means that trans- 
formation [Q,  t~ + (G~ - E)u] ~ F and so its translation 
vector may differ from t~ for t~, (with some 
/ z = l  . . . . .  m) only. So, ( G ~ - E ) u = t , ,  where 
(E, t~) e F ' .  

Now we are ready to prove (17). For space groups 
with a primitive lattice [i.e. 1 "t containing the identical 
transformation (E, 0) only], it follows immediately from 
(Q--E)u=Olmodl .  If F contains transformation 
(E, t~), t~ # 0[mod 1, then F(s) ~ 0 is possible only with 
(s, t~) = 0. So G ,u  = u + t ,  means (16) again. 

Similar considerations show that the necessary and 
sufficient conditions for function p ( - r )  to have the same 
space group F as p(r) are 

2t~ = 0[mo d r,  for every v = 1 , . . . ,  n. (22) 
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For primitive lattices, this means that all the components 
of translation parts in symmetry equations must be equal 
to 0 or to 1/2. Inspection of the list of space groups 
shows that, for groups with nonprimitive lattices and 
without the inversion center at the origin, the only 
exceptions from this simple rule are 14132 and 
1432. 
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